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ABSTRACT

Local properties of the hodograph transformation for irrotational conical
flow, as derived by means of differential geometry, are presented. The
supersonic flow over the expansion side of a swept forward arrow wing or
delta wing, both with supersonic leading edges, is discussed as an example
of how knowledge of these properties, especially in singular points of the
transformation, can be employed for the formulation of boundary value
problems.

INTRODUCTION

This paper discusses supersonic spatial flows which are conical in the sense
originally introduced into aerodynamics by Busemann.' In such a flow the
velocity and the conditions defining the state of the gas, e.g., the pressure and
temperature, are constant on rays through one point of the physical space,
called the center of the conical field.

Since the equations for conical flow are nonlinear, an analytical treatment of
the problem has only been given by linearization of the equations, which was
initiated by Busemann,2 whereas also higher order approximations were con-
sidered. In the nonlinear theory, the flow around a specific body is obtained as a
numerical solution of the differential equations. It is of interest for the proper
formulation of boundary value problems to consider these equations in more
detail. This has been done to some extent by Bulakh in a number of papers
(Refs. 3, 4, and papers cited therein). The present paper presents a discussion on
the local properties of the hodograph transformation for irrotational conical
flow. These properties are being used to express quantities of physical interest in
terms of the geometry of the hodograph surface. A study of the hodograph
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surface then gives information on the structure of solutions of the equations for

conical flow. Furthermore, an example will be given how these properties can be

employed in the formulation of boundary value problems. Because of timt
limitations this discussion will be of a condensed nature. A more detailed accoune
has been given in Refs. 5 and 6.

ANALYSIS OF IRROTATIONAL CONICAL FLOW ON THE

UNIT SPHERE

In the physical space let a right-handed coordinate system .r, y, z be fixed

with the origin at the center of the conical field, and let u,  r, and w be the com-
ponents of the velocity along these axes, respectively. The coefficients of viscosity

and heat conduction of the gas are assumed to be zero and the gas is assumed to

be perfect. If the flow is free of rotation, a conical velocity potential F may be
defined, related to the velocity potential for three-dimensional flow  so  by

so(x,y,z)  = (1)

where = - and n =
z-

(2)


The velocity components then become

u =  F v = F„, and w =  F — EFE — 77F„  (3)

If it is assumed, moreover, that the flow is isentropic, the usual conservation

laws yield the following equation

u [1 + e —
a2

w I+ 20, — wE) (v — wn) 

a2

)F„[1 + 772 — (1) "2 = 0 (4)
a'

where a is the local speed of sound, related to the velocity components by

a, _ 7 ± 1 a 2 _ 7 — 1 (1 2 + r 2 + w2)
2*9

a*is the critical speed of sound, and 7 is the ratio of specific heats

(
Co)

7 =

(.5)

The equation for the characteristic directions of this quasi-linear differential

equation can be written as:

(c/nY  (u — w02] 2 en [ (u  — fv,0 (v — wn) ]
[1 + e En—\dUchar a2 d)char a2

(6)
a2
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Since the flow is depending on Eand 77 only, the flow can be described on a sphere

with unitary radius and center in the center of the conical flow field. The charac-

teristics found from Eq. (6) may then be drawn on the unit sphere and called

conical characteristics. Also, conical streamlines may be defined on the unit

sphere, the conical streamline being the intersection curve with the sphere of a

conical stream surface with apex at the center of the conical flow. In an arbitrary

point,--and without loss of generality, this point may be taken to coincide with

=  = 0, the local value of the characteristic directions may be written, with


E. (6), as

1_(
djehar = U2

1
a

(7)

where use has been made of a rotated coordinate system, such that the E axis

is parallel to the velocity component normal to the radius. The rotated system

will be indicated by capital letters. The conical characteristics thus subtend the

Mach angle, defined in terms of the velocity component normal to the radius,

with the conical streamline. Let us call this Mach angle the con i cal Mach angle  iic

and the Mach number, defined in terms of the velocity component U, the

conical Mach number MC ( = I" /a), then Eq. (7) can be written as

(dII _ ± 1
dE ) char ,,\

± tan A, (S)
/  31, 2 _ I

The conical characteristic directions are real and have two different values for

Mc > I; the equation is then of hyperbolic type, and the flow will be called

conical-supersonic flow. For M C = 1 the two conical characteristic directions

are coincident, real and perpendicular to the conical streamline; the equation

is parabolic., and the flow will be termed con ical -son ic. If Mc  < I. the conical

characteristic directions are imaginary; the equation is of elliptic type, and the

flow- will be called con ical-subson ic flow. Points of the unit sphere where U =

will be called conical stagnation points.
In order to illustrate the quantities defined on the unit sphere, in Fig. 1

parallel flow is given as an example of conical flow.
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Fig. 1. Description On the unit sphere of parallel flow t hroughout physical space.
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HODOGRAPH TRANSFORMATION FOR IRROTATIONAL
CONICAL FLOW

The hodograph transformation for irrotational conical flmv is obtained in

the usual way by introducing the Legendre potential

x(u,c) = 11 vn —  F ( ,n)  (9)

which compared with Eq. (3) shows that

x 01,0 = 04,0 (10)

and also that

	

xu = — wu = and )( = — =

Differentiation of Eq. (11) yields

= —  dw„ = — (wdu w„„ (iv)
(12)

(In = — dw, = — (w,„du w,„ (h)

	

If t he Jacobian determinant A w„„w„„ — w„,.2 is finite and different from

zero Eq. (1'2) may be solved for du and dr, and the transformation is hwally
one-to-one. Singularities in the transformation occur for A = 0 and A

The differential equation in the hodograph space becomes

(t) ww,)2[1w„„ + te:" — —2u,„,

[1

ww„ )2

(u ww„)
wutv, — a=

2 ettWW„

(rww,.)

— 0

directions

— 0







a'

and the corresponding equation for

( dr 2 E . (/' +

)

the hodograph

W„ — a

characteristic

(du
)char

2

„)2

1 1- 21),—
lb/ char

(u ww„) (rww,)

,

(1`

+ [1

au

(11 ww
+ w:a=

which reduces in the rotated coordinate

(di"
dU)char

system

a=

to




— 1

THE USAGE OF LOCAL PROPERTIES OF THE TRANSFORMATION

TO EXPRESS QUANTITIES OF PHYSICAL INTEREST IN TERMS OF


THE GEOMETRY OF THE HODOGRAPH SURFACE

From Eq. (11) it follows that the radius in the physical space is perpendicular

to the surface element at the corresponding point on the hodograph surface.

The sphere obtained by collecting at one point the unit vectors along the normals

to the hodograph surface is the unit sphere in the physical space, as mentioned
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before. From differential geometry the transformation from the hodograph
space to the physical space may he recognized as being the spherical or Gaussian

transformation of the hodograph surface. Differential geometry may thus well

be used to derive the local properties of the hodograph transformation.

In Ref. a discussion is given of properties related to the curvature of the

hodograph surface, expressed by the total or Gaussian curvature

1
KG = -

PiP2

which equals the Jacohian determinant A. In this equation and throughout the

rest of this paper, pi is the major principal radius of curvature and p2 the minor

principal radius of curvature. It may be shown, for example, that the + ( —)
conical characteristic and the (—) hodograph characteristic. map Onto each

other in such a way that the + ( — ) conical characteristic is perpendicular to

the — (+) hodograph characteristic.

Use of local properties of the transformation makes it possible to express

quantities of physical interest in terms of the geometry of the hodograph surface.

Of interest, for example, are the magnitude and direction of the acceleration.

The component of the acceleration along the streamline may be expressed as

a 

= 31-r (PI + P2)

where r is the radius to the considered point. The component of the acceleration

normal to the streamline may be written as

P2

g" = r I Pi + 1321 1 312 1 -
Pi
a

— 1 (18)

+ /2)2

whereas the angle 0 which the acceleration makes with the conical streamline

may be obtained from

[1 — (31,2— 0] [mc2— 1 — 111
PI 


tan 0 =
1 +

Pi

(19)

Here, 0 is measured positive in counterclockwise direction, and without loss of

generality 13may be taken such that — / f3 ir/,2. By definition, the hodo-

graph streamline makes the same angle with the U-axis. The function given by

Eq. (19) is illustrated in Fig. 2.  From it, it may be seen when the transformation

is regular (p2/pi 9) that for conical-subsonic (M, < 1) and conical-sonic flow

(M, = 1), the points on the hodograph surface are hyperbolic points since

p2/pi < 0 and KG = A < O. Conical-supersonic flow  (M, > 1) is either mapped

(17)
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1)in.et ion Ilf the hodograpli streamline.

Onto hyperbolic or elliptic points, since  p2 pi < 0  or p2 pi > and KG =

either is negative or positive. Furthermore, it can be seen that for elliptic. points

the hodograph streamline lies in the region which the hodograph characteristics

inclose around the U-axis, whereas for hyperbolic points the hodograph stream-

line lies outside of this region.

If  192/ = 0,  the hodograph streamline is tangent to one of the hodograph

characteristics and the transformation is singular. Singularities thus occur for

1 and the flow then has a wavelike stnwture. It is of interest, therefore, to

consider the relation between the strengths of the waves, propagating along

the conical (' haracteristics and the shai)e Of the hodograph surface. Classification

of the shape of the hodograph surface, as permitted by the differential equation

f Eq. (13)1, then results in a description of the behavior of the waves, which

thereby reveals the structure of conical ffi)w.

RELATION BETWEEN THE STRENGTH OF THE WAVES,

PROPAGATING ALONG THE CONICAL CHARACTERISTICS


AND THE SHAPE OF THE HODOGRAPH SURFACE

Consider a solution ot' the quasi-linear equation for irrotational conical flow

[Eq. (4)] in a region, where the flow is conical-supersonic, :not let PQ be an

elementary arc ds of a conical streamline in such a region, as sketched in Fig. 3

Draw the conical characteristics Pq: and PQ_ through P and QQ_._ and QQ_

through Q. The change in velocity of a particle when it moves from P to Q. dq,
can be shown to consist of two separate contributions, induced by two stationary

waves. One of them,  dq,,  is completely determined by conditions on the charac-

teristic segment l'Q_ and the other, , is completely determined by conditions

1
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on the characteristic segment  PQ+.  If the flow is thought to be the result of a

construction process, developing in time, dq, (dg_) may be thought to be induced

by the motion of a wave, the front of which coincides with characteristic  PQ._

(PC)f), when a given particle is in P  and coincides with characteristic Q,Q (Q_Q)
when this particle has arrived in Q. The speed of propagation of the wave front

is then the speed of sound, being equal to the magnitude of the velocity com-

ponent normal to the wave front. In this sense, it is said that a conical charac-

teristic carries an elementary contribution to the change in velocity along the

conical streamline and that this contribution is carried downstream; this means,

that changes along the streamline are prescribed by conditions on the characteris-

tics that border the Mach quadrangle upstream.

A simple derivation shows that

dq, = (1 + tan 0 tan  12) ds = ds  (20)

Sq
dq_ =— tan 0 tan  1.4) ds = s_ ds

Ss
(21)

where Sq/Ss is the velocity gradient along the conical streamline. Let us call

8+  and s_ the strength of the +wave and —wave, respectively, since these

quantities are a measure of the elementary contributions, propagating along

the — and + characteristics, respectively. If s > 0, the speed increases as a

result of the contribution, and because in an isentropic flow the pressure then

decreases, the wave will be called an expansion wave. Similarly, if  8 < 0 the

wave will be called a compression wave. It may be useful further to use the

expressions partially expanding .flow for an expanding flow in which the expansion

wave along one characteristic is stronger than the compression wave along the

other characteristic and fully expanding flow if both waves are expansion waves.

Similarly, we might distinguish partially compressing and fully com pressing .flow.

ds+

lic

ds_

Fig. :3. Elementary Nlach quadrangle in a eonieal-supersonic thiw.
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The relations obtained for 0 [Eq. (19)], 12, [Eq. (8)1 and the acceleration

Equation (17) may now be used to express the wave strengths in terms of the

shape of the hodograph surface. Thence follows:

8+ - 	
221/11/, 1 +

and

[i ez  1) ]

[ me, P2
PI (22)

s_ P2
— 2MM, 1 +

PI

[1 -( 30 — 1) [M,2 — 1 — 12p2,1(93)

where the upper sign should be taken if 0 > 0 and the lower sign if 0 < O.

Furthermore, a multiplication of Eqs. ('22)  and (23) gives

1M,2 1
= (24)

4M2 211,2 — 1 K0

It may be seen, by using in Eqs. ('20) and (21) the aforementioned property, that

for p2/pl < 0 there is 10 > ir/2-g, (and 10. irP2 because of the sign ( onven-

tion), whereas for p2/pl > 0 there is fi < 71-/'2-1.c„ or directly from Eq. ('24),
that fully expanding or fully compressing flow is mapped onto aa elliptic point and

partially expanding or partially compressing flow is mapped onto a hyperbolic
point. If the flow is neither expanding nor compressing because the contribu-

tions of the two waves cancel, the point is mapped onto an orthogonal hyper-

bolic point (p2/p1 = — 1).
The conical Mach numbers, bounding the scale of conical-supersonic Mach

numbers, namely M. = 1 and M, , are of interest, because they can occur

at natural bounds of regions of conical-supersonic flow. In order to get a better

understanding of the structure of the flow, boundaries given by body surfaces

are not considered as natural bounds, since the flow may be thought to be

extended analytically through the body surface. It can be shown from Eqs. (22 )
and (28), that at a point of a conical-sonic line (M. = 1, p2/p, < 0) only an

expansion ware can arrive, which is reflected as a compression ware, whereas the

wave strength goes to infinity (Fig. 4). At a vacuum point (M, —> , pm/p < 0)
only a compression ware can arrive, which is reflected as an expansion ware, both

waves having a wave strength equal to zero at the vacuum point (Fig. .5).
In the discussion thus far, it was assumed that the Gaussian curvature is

continuous, so that no discontinuities in the second derivatives are present

along the characteristic's. Let us assume now, that across a hodograph charac-

teristic there is a jump in the Gaussian curvature. It may then be derived from

the fact, that the normal curvature of such a characteristic is independent of

the side of approach, that the product of the Gaussian currature and the strength
of the ware, along the characteristic across which the jump occurs, is an invariant.
From Eq. ('24) then follows directly that the strength of the wave along the other

characteristic is unaffected by the jump in Gaussian curvature.
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Fig. 4. Reflection of an expansion wave at a conical-sonic line.
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Fig.:). Reflection of a compression wave at a vacuum point.

SINGULARITIES OF THE TRANSFORMATION

SINGULARITIES CONNECTED WITH A CONTINUOUS
GAUSSIAN CURVATURE

CONICAL LIMIT LINES OF THE FIRST TYPE

A conical limit line of the first type is a line on the hodograph surface where
KG  = (1 and separates regions with a different sign for  K G . Its image on the unit
sphere will also be called a conical limit line. Since p , the acceleration
becomes infinite. Furthermore, it can be shown that on the unit sphere, the
conical limit line borders a doubly covered region, as a result of which the conical
streamlines and one family of characteristics reflect at the limit line from one
sheet into the other. The other family of characteristics forms an envelope,
which coincides with the limit line. In Fig. 6 local properties of the transforma-
tion at a point of a conical limit line of the first type are illustrated for ex-
panding flow.

It can be shown that for expanding flow a  point on the limit line generates
expansion wares  along those characteristics in both sheets, which are tangent
to the limit line and for compressing flow such  a point absorbs compression wares
traveling along these characteristics. These waves have infinite strength at the
limit line. The waves traveling along the  other  family of characteristics are
nfiected into the other sheeet with  equal  and  opposite  strength. In a conical
simple wave flow these waves have zero strength and the characteristics form-
ing the envelope are the straight characteristics.
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Fig.  6.  l'oint on a conical limit line of the first type in an expanding flow.

A cusp in a conical limit line occurs when the hodograph streamline and
hodograph limit line are tangent. If the hodograph limit line coincides with a
hodograph streamline, then the conical limit line on the unit sphere is degenerated
into a point, wherein the velocity is multivalued. The elementary contributions
generated or absorbed by the limit line then spread in an infinite number of
directions. Such a centerpoint of waves occurs, for example, at a sharp edge
such as a subsonic leading edge (p2 (J) or a supersonic leading edge (p2 = 0)
of a delta wing.

CONICAL BRANCH LINES (n, THE FIRST TY PE

In order to give a definition of a conical branch line it is more convenient to
use the Jacobian D = gu,r)/(5(E,n)of the inverse transformation, which equals
the inverse of the Gaussian curvature K(». A conical branch line of the first
type will now be defined as a line on the unit sphere where D = 0, and separates;
regions which have a different sign for I). On the inlage of the branch line in the
hodograph space the Gaussian curvature KG (p2 —) 0). Both on the unit
sphere and in the hodograph space the branch line coincides with a characteristic.
The hodograph surface exhibits a fold along the conical branch line; in other
words, two sheets of the hodograph surface are tangent to each other along a
common edge, which coincides with the branch line. In the hodograph space the
branch line is an envelope of the hodograph streamlines. Local properties of the
transformation at a point of a conical branch line of the first type for expanding
flow are illustrated in Fig. 7.

It can be shown from Eqs. (22) and (23) that the conical  branch line  of the
first type is a characteristic, which  does not carry elementary contributions and
separates the characteristics of its family, which carry expansion wares from those
which carry compression wares.  The other characteristic carries an expansion or a
compression wave depending on whether the flow is expanding or compressing
at the branch line.

1

SINGULARITIES CONNECTED WITH A DISCONTINUOUS
GAUSSIAN CURVATURE

CONICAL LIMIT LINES OF Tit E SECOND TYPE

If along a hodograph characteristic a region of hyperbolic points on one side
of the characteristic is connected with a region of elliptic points on the other
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side, such that the Gaussian curvature is discontinuous across this characteris-

tic, we will call this line a conical limit line of the second type. As for a limit line

of the first type a doubly covered region on the unit sphere appears and reversal

of the conical streamlines occurs at the limit line. Local properties of the trans-

formation at a point of a limit line of the second type in expanding flow are

illustrated in Fig. 8.

It can be shown that for expanding flow the characteristics of the family to
which the limit line belongs carry expansion wares, traveling in one direction in

one sheet and the opposite direction in the other sheet, whereas for compressing
.flow these characteristics carry compression Wares. As is the case for the accelera-

tion at the limit line, the strength of the wave along the limit line remains

finite and jumps across the limit line. Like at a conical limit line of the first type,

it can he shown that the waves traveling along the other family of characteristics

reflect from one sheet into the other with equal and opposite strength.

CONICAL BRANCH LINES OF THE SECOND TYPE

A conical branch line of the second type will be defined as a conical charac-

teristic on the unit sphere, which is a dividing line between a region of points

where D > 0 on one side and a region where D < 0 on the other side of the line,

such that across the characteristic a discontinuity in D occurs. As for a conical

branch line of the first type, it can be shown that in the hodograph space the
q=Const.

q =Const. KG> 0

Char 1

1

Char. 2

a i=i1= arc ton


\ otq —1

P

2

Cho. 1

B'

Conical Branch Line
of the First Type;

D=0

Fig. 7. Point 011 a conical branch line of the first type Ill (II expanding How.
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Co> 0
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Char. 1
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BChar.  I

Fig. H. Point on a conical limit line of the second type in an expanding flow.
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branch line is a characteristic, which is the line of tangency of two sheets of the

hodograph surface, lying on the same side of the branch line. Across this charac-

teristic the Gaussian curvature is discontinuous and jumps through zero. In

Fig. 9 local properties of the transformation at a point of a conical branch line

of the second type in expanding flow are illustrated.

It can be shown that the conical branch line of the second type is the one

characteristic of its family, which separates those characteristics, which carry

expansion wares from those which carry compression wares. The strength of the

wave along the branch line jumps through zero across this line. The strength

of the waves along the other family of characteristics is not affected by the

discontinuity across the branch line.

CONICAL SIMPLE WAVE FLOW

A region of conical simple wave flow may be thought to be obtained as a result

of a limiting process, by introducing discontinuities in the Gaussian curvature

across two hodograph characteristics CI and of the same family, such that the

region in between these characteristics shrinks till it coincides with a curve,

while in every point of the region, called an edge surface, 0; thus KG x
(Fig. 10). The hodograph streamline then becomes tangent to one of the hodo-
graph characteristics as is illustrated in Fig. 2, where lines of constant M.

intersect the line  p2/p, = 0 (0  axis) at the characteristic angle.

It may be concluded from the invariance of the product of Gaussian curvature

and wave strength along a characteristic across which a discontinuity in Gaussian

Y

A'
\ \\

\\
\D>o\

 DVO

C'

Char. 2

A

Char. 1

Fig. 9. Point on a conical branch line of the second type in an expanding flow.

R'

C.
P'

Fig. 10. Conical simple wave flow.
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curvature occurs, if KG, cx on the edge surface that the ware strength of the
waves along the curved characteristics ranishes. The straight characteristics carry

waves with a strength unequal to zero (8 =
The occurrence of a limit line of the first type in a conical simple wave flow

is discussed before as was the situation where the straight characteristics are

centered in one point.

REGIONS OF PARALLEL FLOW IN A CONICAL FLow FIELD

A region of parallel flow may be obtained by extending the limiting process

used to achieve conical simple wave flow further by decreasing the strengths

of the waves, propagating along the straight characteristics. Since in a conical

simple wave flow s = pi/MM, or s = p/MM,. sin A. zero wave strength may

only be obtained by letting the radius of curvature of the space curve, represent-

ing the simple wave flow, approach to zero in every point of it. As a result, the

edge surface shrinks until it coincides with a point and a point surface is obtained.

The parallel flow may either be bounded by a straight characteristic (and then

the adjacent flow field is a (onical simple wave flow) or a conical-sonic. line in

which case the possible adjacent flow fields may be derived by means of a series

expansion and are given in Fig. 11.
If the flow adjacent to a parallel flow along a conical-sonic line is conical-

supersonic, it can be shown that a point on t he conical-sonic line generates
compression wares along both characteristics if the flow is compressing and absorbs
expansion wares almig both characteristics if the flow is expanding. This property

makes the conical-sonic line, bounding a parallel flow, the counterpart of the

limit line of the first type. As a further differen ( e with the limit line, it may be

noted that the ware strengths at the conical-sonic line are finite, in general,

instead of infinite as for the case of the limit line.
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SUPERSONIC FLOW ON THE EXPANSION SIDE OF A FLAT

SWEPT FORWARD ARROW WING WITH SUPERSONIC LEADING


EDGES

The supersonic flow around a flat swept forward arrow wing with supersonic

leading edges was discussed before by Bulakh.1 In order to add to this discussion

and as an example how knowledge of the local properties of the hodograph
transformation may be used for the qualitative description of a conical flow

field, the flow on the expansion side will now be investigated. Consider a flat

wing, as sketched in Fig. 1q.,of which the leading edges are swept forward, such

that the velocity component normal to a leading edge is supersonic, placed at

an angle of attack in a uniform stream and use the coordinate system sketched

in Fig. 12. A picture of the flow on the expansion side of the wing is given in

Fig. 13 in such a way that the flow field on the unit sphere is projected centrally

fi
o

Fig. lq. Geometry of ;i flat swept-forward arrow wing with supersonic kading edges.
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Fig. 13. Flow pattern on the expansion side of a flat swept-forward arrow wing with


supersonic leading tilges.
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from the center of the conical flow onto a plane, downstream of 0, normal to

the center line of the wing. In Fig. 14, the corresponding surface in the hodo-
graph space is sketched. The parallel flow in the undisturbed stream I is bounded

by the straight conical characteristics, 1- '2 and 1-2', going through the inter-

section points of the leading edges with the unit sphere. These points of inter-

section are not shown in Fig. 13. Obviously, since the parallel flow I is mapped

onto a point surface I, where pi = 130 = 0,  both families of conical characteristics

do not carry elementary contributions. Adjacent to the straight characteristic

1-2 (and 1-2'), there will be a conical simple wave flow, the straight characteris-

tics of which are centered at the leading edge interse (' tion with the unit sphere.

Such an intersection point is a conical limit line of the first type, degenerated to a

point, and generates expansion waves, which travel downstream along the

straight characteristics in the region 1-2-3-4 (1-t.).'-3'-4').The flow expands until

the velocity vector is parallel to the wing surface and another region of parallel

flow II occurs near the wing surface, in the hodograph space given by the point

surfaces III, and I1R. The conical simple wave flows are given in the hodograph
space by the edge surfaces I IIR and I IIL, which coincide with plane curves

lying in planes perpendicular to the respective leading edges. On the edge

surfaces pi > 0,  since the flow is expanding, except for the lines of parabolic

edge point (pi oc)  which are the images of the centerpoints.
The expansion waves of both simple wave regions interact in the characteristic

quadrangle 1-4-5-4' and the flow is fully expanding in this region and mapped
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onto a region of elliptic points. Downstream of the characteristic 4'-5 and (4-3),

the expansion waves continue in the simple wave region 4'-3-9'-6' (4-3-9-6),

which is mapped onto the edge surface III (Iln III), which coincides with

a space curve, so that the straight characteristics are not centered. The region

downstream of the straight characteristics 3-6 and is a region of parallel

flow III, mapped in the hodograph space onto the point surface III, which

coincides with the endpoint of a velocity vector, pointing downwards with

respect to the wing surface.

The region where the influence of the wing apex is noticeable is now confined

to the region downstream of the curve 11-9-6-7-8-7'-6'-9'-11' of which the

corresponding part of the hodograph surface is drawn in Fig. 14 as a separate

surface, which actually should be attached to the part of the surface on the left

side along the curve III . III and lI III. In fact, virtually the same boundary

value problem is obtained as for the supersonic delta wing. If, namely, Fig. 13

is turned around over 90° to the right, the left hand side of the flow becomes

similar to the right side of the flow on the expansion side of the delta wing.

The line 1-5-8-0 is equivalent to the delta wing surface ;111(1 the line 10'-11'-0

to the line of symmetry.

The parallel flows Ilk and 11,, are bounded by the characteristics 3-4 ;ind 3'-4',

the wing surface and the downstream parts of the characteristic's through 4 and

4', respectively. Such a downstream part continues to the point, where this

straight characteristic is tangent to the cimilar conical-sonic line in the region

of parallel flow. The continuation of the characteristic beyond this point, 9-10

(and 9'-10') is an upstream part of it and from the poilit 9 on, the border of the

parallel flow II is given by the conical-sonic line 9-11 (and 9' - 11'), being the

envelope of straight characteristics in the parallel flow.

Downstream of the line 9'-11' (9-11) the flow is expanding and a continuous

transition of the type lb of Fig. 11 to conical-subsonic flow occurs. (hi the down-

stream side the simple wave flow region 4'-3-6'-9' (4-3-6-9) is bordered by the

downstream curved characteristic 9'-6' (9-6) through the point 9' (9). Along

this line the influence of the apex of the wing, experienced along the conical-

sonic line 9'-11' (9-11), propagates in downstream direction from 9'(9) into the

direction of 6' (6). The region of parallel flow III is bounded downstream by the

straight characteristic 6'-7' (6-7), which is the continuation of the characteristic

9'-6' (9-6), and for lower angles of attack by the conical-sonic line 7 - 8 - 7'. Down-

stream of characteristic 9'-6' (9-6) the flow is still expanding in the neighborhood

of 9', this expansion becoming less and less if one moves along 9" - 6' in the direc-

tion of 6'; then starts to develop into compressing flow until the deceleration

becomes infinite at sonic point 1'2' (1'2). Approaching from the other side it may

be shown that the conical-sonic line 7-8-7' is a limit line, since downstream of it

the flow must be compressing in order to turn the downward pointing velocity

in the direction of the wing center line. The type of transition IIIb of Fig. 11 to

conical-supersonic flow thus occurs. The continuation of the conical-sonic line,

the characteristic 7'-6' (7-6) and the part 6'-1:2' (6- 12) of characteristic 6'-9'

(6-9) are then a conical limit line of the second type. The reversed flow is bounded

downstream by a limit line of the first type 1"2-13-H', where the flow once more
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reverses and after (Tossing the conical-sonic line 9-13-9' enters the conical-

subsonic region around the conical stagnation point O. where all conical stream-

lines converge to.

The waves that arrive at the characteristic 9'-6' (9- ( ) may be split up into a

group that arrives at 9'12' (9-12) and a group arriving at 12'-6' (12-6). The

first group of expansion waves crosses the characteristic 9'12' (9-12) without

•hange in its wave strength and is reflected as compression waves at the conical-

sonic line 9'-13' (9-13) along some part near the point 9' (9). Between 9'12'

(9-12) and the conical-sonic line a region of partially expanding flow occurs

near 9' (9) and a region of partially compressing flow occurs further away front

9' (9), both regions being mapped onto a region of hyperbolic points on the

hodograph surface. Eventually, the reflected characteristics become tangent to

the limit line of the first type 1'2'-13-1-2 and the compression waves are absorbed

by the limit line along a part from the point 12' (1'2) on. The expansion waves

of the other group are, at the limit line of the second type 12'-6 (12-6) reflected

into the sheet of reversed flow as compression waves of equal strength. Front

the sheet of reversed flow they are at the limit line of the first type 12'13-12

reflected again into the sheet of the unreversed flow as expansion waves with

equal strength. Another reflection occurs at the conical-sonic line 9'-13 (9-13),

where the expansion waves are reflected again as compression waves which

travel further (l ownstream in order to be absorbed by the limit line 1'2'13-12,

by reaching points on the limit line along the characteristics which are tangent

to the limit line. Thus, all the waves reaching the characteristic 9'-6' (9-6)

eventually are absorbed by the limit line over the length 12'13 (12-13). The

whole region 9'-12'13-6'-9' (9-12-13-6-9) in the unreversed flow is either

partially expanding or partially compressing and mapped onto a region of

hyperbolic points. In the reversed flow, the characteristics in the region 12'-6'13

(12-6-131, which belong to the same family as the characteristic 6'-13 ((i -13),

carry compression waves. The remaining wave systems in the sheet of reversed

flow is governed by the conical-sonic line 7'-8-7, which generates compression

waves of finite strength along both families of characteristics. Waves, generated

along 7'-8-7 and traveling to the left (right) enter the compression simple wave

region (V-7'-13 (6-7-131 across the characteristic 7'-13 (7-13) and proceed along

the straight characteristics. These simple wave flow regions arc mapped onto

the edge surfaces 6', 7', 13' and 6, 7, 13 in the hodograph space. They then con-

tinue as compression waves in the region 12'-6'-13 (12-6-13) in order to be ab-

sorbed by the limit line 12' -1 3 (12-13) by approaching the limit line along

characteristics tangent to it in the sheet of reversed flow. The wave, generated

at point 7' (7) is absorbed at 12' (12) and that generated at point 7 (7') is ab-

sorbed at 13 (13). In the region 12'-6'-13 (12-6-13), the flow is fully compressing

and the region is mapped onto i region of elliptic points on the hodograph

surface. In the simple wave region 6'-7'-13 (6-7-13) the curved characteristics,

starting at 6'-7' (6-7), do not carry elementary contributions and all converge

to one point 13' (13). Since in the region 7'-8-7-13 both characteristics carry

compression waves, the flow therein is fully compressing flow and is mapped

onto a region of elliptic points on the hodograph surface.
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